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A theoretical investigation has been made of the roles of the degeneracy and the dynamics of elec-
trons and ions on the DIA (dust ion-acoustic) Korteweg-de Vries and modified Korteweg-de Vries
solitons that are found to exit in a dusty degenerate dense plasma containing non-relativistic degen-
erate ions and both non-relativistic and ultra relativistic electrons fluids, and the negatively charged
dust grains. This fluid model, which is valid for both the non-relativistic and ultra-relativistic lim-
its has been employed with the reductive perturbation method. The K-dV and modified K-dV
equations have been derived, and numerically examined. The basic features of K-dV and modified
K-dV solitons have been analyzed. It has been observed that the dusty degenerate plasma system
under consideration supports the propagation of silitons obtained from the solutions of K-dV and
modified K-dV equations. The relevance of our results obtained from this investigation in compact

astrophysical objects is briefly discussed.

I. INTRODUCTION

Recently, the physics of dusty plasma is receiving a
great deal of attention[1-3]. Dusty plasmas are char-
acterized as a low temperature multispecies ionized gas
comprising electrons, protons, and negatively (or posi-
tively) charged grains of micrometer or submicrometer
size. The study of the collective effects in dusty plas-
mas is of significant interest. Charged dust grains are
found to modify or even dominate wave propagation
[4-8], wave scattering [9-12], wave instability [13], self-
similar plasma expansion [14], velocity modulation [15],
charged particle transport [16], and ion trapping [17].
However, most of the studies on wave motions [4-15]in
dusty plasma assume constant charge on the dust grains.

Now-a-days a number of authors have become inter-
ested to study the properties of matter under extreme
conditions [18-23], which occur due to the combine ef-
fect of Pauli’s exclusion principle and Heisenberg’s un-
certainty principle, depends only on the number density
of constituent particles, but independent on it’s own tem-
perature [34-36]. This degenerate pressure has an impor-
tant role to study the electrostatic perturbation in mat-
ters which exist in extreme conditions [18-20, 37, 38].
Electron degenerate pressure will halt the gravitational
collapse of a star if its mass is below the Chandrasekhar
limit (i.e. 1.44 solar masses) [39]. This is the pressure
that prevents a white dwarf star from collapsing. As-
trophysical aspects of high density like in many cosmic
environments, compact astrophysical objects [24-27] and
planetary systems have been recently discussed by Forton
[33]. Examples of the latter are white and brown dwarf
stars [28-30], as well as massive Jupiter [31] which serves
as the super-Earth terrestrial planets around other stars
[32], and the benchmark for giant planets.

In case of such a compact object the degenerate elec-
tron number density is so high (in white dwarfs it can
be of the order of 103° ¢cm™3, even more [34-36]) that
the electron Fermi energy is comparable to the electron
mass energy and as a result the electron speed becomes

comparable to the speed of light in vacuum. For such
interstellar compact objects the equation of state for de-
generate ions and electrons are mathematically explained
by Chandrasekhar [20] for two limits, named as non-
relativistic and ultra-relativistic limits. Chandrasekhar
[18, 20] presented a general expression for the relativistic
ion and electron pressures in his classical papers. The
pressure for ion fluid can be given by the following equa-
tion

P = K;nj, (1)
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for the non-relativistic limit (where A. = wh/mec = 1.2 x
1071% ¢m, and A is the Planck constant divided by 27).
While for the electron fluid,

P, =K.n], (3)
where

v = o; K, = K; for nonrelativistic limit, and (4)
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in the ultra-relativistic limit [18-20, 34, 35].

Recently, a large number of authors [34, 35, 40-50],
etc. have used the pressure laws (3) to (5) investi-
gate the linear and nonlinear properties of electrostatic
and electromagnetic waves, by using the non-relativistic
quantum hydrodynamic (QHD) [40] and quantum-
magnetohydrodynamic(Q-MHD) [43] models and by as-
suming either immobile ions or non-degenerate uncorre-
lated mobile ions. It turns out that the presence of the
latter and degenerate ultra relativistic electrons with the
pressure law (3-5) admits one-dimensional localized ion
models (IMs) supported by linear and non linear ion iner-
tial forces and the pressure of degenerate electron fluids in



a dense quantum plasma that is unmagnetized. Further-
more, modified Volkov solutions of the Dirac equation
for electrostatic and electromagnetic waves in relativis-
tic quantum plasmas have been discussed by Mendonca
and Serbeto [51]. Again in this present days, some au-
thors [52-54] has made a number of theoretical investiga-
tions on the nonlinear propagation of electrostatic waves
in degenerate quantum plasma. These investigations are
mainly based on the electron equation of state, which are
only valid for the non-relativistic limit. Some investiga-
tions have been also made of the nonlinear propagation
of electrostatic waves in a degenerate dense plasma which
are mainly based on the degenerate electron equation of
state valid for ultra-relativistic limit [34-36].

Still now, there is no theoretical investigation has been
made to study the extreme condition of matter for both
non-relativistic and ultra-relativistic limits on the prop-
agation of electrostatic solitary waves in a dusty de-
generate dense plasma system. Therefore, in our pa-
per we study the properties of the solitons consider-
ing a dusty degenerate dense plasma containing degen-
erate electron-ion fluid (both non-relativistic and ultra-
relativistic limits) with the arbitrary (either positive or
negative) charged dust grains to study the basic features
of the electrostatic solitary structures with the solutions
of modified K-dV equation. Our considered model is rel-
evant to compact interstellar objects (i.e. white dwarf,
neutron star, black hole, etc.).

II. GOVERNING EQUATIONS

We consider a one-dimensional, unmagnetized dusty
degenerate electro-ion plasma system containing non-
relativistic degenerate cold ion and both non-relativistic
and ultra-relativistic degenerate electron fluids with ar-
bitrary charged dust grains. We are interested in the
propagation of electrostatic perturbation in such a dusty
degenerate dense plasma. Thus, at equilibrium condition
we have n;y = neo, where n;p (ne) is the ion (electron)
number density at equilibrium. The nonlinear dynamics
of the electrostatic waves propagating in such a degener-
ate plasma is governed by
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where n; (n.) is the ion (electron) number density nor-
malized by its equilibrium value n;y (neo), u; is the ion
fluid speed normalized by C; = (m602/mi)1/2 with m.

(m;) being the electron (ion) rest mass, ¢ being the speed
of light in vacuum, ¢ is the electrostatic wave poten-
tial normalized by m.c?/e with e being the magnitude
of the charge of an electron, the time variable (t) is
normalized by wp,; = (4mnge?/m;)'/2, the space vari-
able (z) is normalized by A\, = (mc?/4mnge?)'/? and
p is the polarity of the dust grains. The constants are
Kl = ng‘_lKi/mizCiQ and K2 = ngfch/miC’iz.

III. DERIVATION OF K-DV EQUATION

Now we derive a dynamical K-dV equation for the non-
linear propagation of the DIA waves by using equations
(6-10). To do so, we employ a reductive perturbation
technique to examine electrostatic perturbations propa-
gating in the relativistic dusty degenerate dense plasma
due to the effect of dispersion, we first introduce the
stretched coordinates [55]

C:el/Q(a:—th), (11)
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where V,, is the wave phase speed (w/k with w being
angular frequency and k being the wave number of the
perturbation mode), and € is a smallness parameter mea-
suring the weakness of the dispersion (0 < ¢ < 1). We
then expand n;, ne, u;, p, and ¢, in power series of €:
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and develop equations in various powers of €. To the

lowest order in €, (6-10), using equations (11-17), give
as uf!) = VoW /(VF - K1), ni) = 9/(V} ~ Kj),
nt = oW /KL, and V, = /K5/(1—p)+ K| where
K| = aK /(e —1) and K} = vKo/(y — 1). The rela-
tion V, = /K%/(1 — u) + K| represents the dispersion
relation for the dust ion-acoustic type electrostatic waves
in the degenerate plasma under consideration.

We are interested in studying the nonlinear propaga-
tion of these dispersive dust ion-acoustic type electro-
static waves in a degenerate plasma. To the next higher
order in €, we obtain a set of equations
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FIG. 1: Showing the effect of ug on soliton (potential struc-
ture) obtained from eq. (26) for both electron-ion being non-
relativistic degenerate when p is 0.5.
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Now, combining equations (18-22) we deduce a
Korteweg-de Vries equation as
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The stationary solitary wave solution of equation (23) is

qS(l) = ¢sech? (%) , (26)

where the special coordinate, & = ( —uoT, the amplitude,
bm = 3ug/A, and the width, A = (4B /ug)*/?.

IV. DERIVATION OF MODIFIED K-DV
EQUATION

To examine electrostatic perturbations propagating in
the relativistic degenerate dense plasma due to the effect

FIG. 2: Showing the effect of ug on soliton (potential struc-
ture) obtained from eq. (26) for ion being non-relativistic de-
generate and electron being ultra-relativistic degenerate when
w©is 0.5.

FIG. 3: Showing the effect of p on soliton (potential struc-
ture) obtained from eq. (26) for both electron-ion being non-
relativistic degenerate when wug is 0.1.

of dispersion by analyzing the outgoing solutions of equa-
tions (6-10), we now introduce the new set of stretched
coordinates for the modified K-dV equation is:

€= ez — V), (27)
T = et (28)

To the lowest order in €, using equations (27,28, and
13-17), into the equations (6-10), we find the same results
as we have had for the solitons for K-dV equation.

To the next higher order in €, we obtain a set of equa-
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tions, which, after using the values of ugl), ;. and ne

can be simplified as



FIG. 4: Showing the effect of 4 on soliton (potential structure)
obtained from eq. (26) for ion being non-relativistic degener-
ate and electron being ultra-relativistic degenerate when ug
is 0.1.
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To further higher order of €, we obtain a set of equations
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FIG. 5: Showing the effect of ug on soliton (potential struc-
ture) obtained from eq. (41) for both electron-ion being non-
relativistic degenerate when g is 0.5.
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Now combining equations (34) -
of n(l), 52), uz(.l), u§2)

of the form

a¢<1

(38) and using the values
, and p®, we obtain an equation

P
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We call equation (39) as modified K-dV equation for
planner geometry. The stationary solitary solution of
equation (39) is given by

qﬁ(l) = ¢m sech(i) (41)

where the special coordinate, £ = ( — ug7, the amplitude
is ¢p = 6“0 , the width is A =

plasma Spemes speed at equilibrium.

1 .
- and ug is the
V. NUMERICAL ANALYSIS

In the figures 1-4 we have tried to show the solitons
(solitary profiles) from the solution of K-dV equation (26)



FIG. 6: Showing the effect of ug on soliton (potential struc-
ture) obtained from eq. (41) for ion being non-relativistic de-
generate and electron being ultra-relativistic degenerate when
w©is 0.5.

FIG. 7: Showing the effect of u on soliton (potential struc-
ture) obtained from eq. (41) for both electron-ion being non-
relativistic degenerate when wg is 0.1.

due to the effect of 1 and ug on the potential, (1) for the
case of electron-ion being non-relativistic degenerate and
ion being non-relativistic degenerate and electron being
ultra-relativistic degenerate. And the figures 5-8 repre-
sent the solitons (solitary profiles) from the solution of
modified K-dV equation (41) due to the effect of p and
ug on the potential, ¢! for the both case of relativistic
limit. From the figures 1-2 we have observed the effect
of ug on the potential, ¢() for the solitary profiles ob-
tained from the solution of K-dV equation (26) when we
have considered the value of y as 0.5 for the both case
of relativistic limits. And from the figures 3-4 we have
observed the effect of 1 on the potential, ¢(*) for the soli-
tary profiles obtained from the solution of K-dV equation

FIG. 8: Showing the effect of y on soliton (potential structure)
obtained from eq. (41) for ion being non-relativistic degener-
ate and electron being ultra-relativistic degenerate when ug
is 0.1.

(26) when wug is 0.1 for the both case of relativistic lim-
its. Again from the figures 5-6 we have analyzed the
effect of up when p is 0.5 and from the figures 7-8 we
have observed the effect of u when ug is 0.1 on the po-
tential, (1) of the solitons obtained from the solution of
modified K-dV equation (41) for both case of relativistic
limits.

By the careful observation on the figures 1-8 it has be-
come clear that the terms 1y and p have an great effect on
the potential, 3V of the K-dV and modified K-dV soli-
tons. Because the potential, #(!) increases more rapidly
for ion being non-relativistic degenerate and electron be-
ing ultra-relativistic degenerate than for both electron-
ion being non-relativistic degenerate. Again in the same
case (either ion being non-relativistic degenerate and
electron being ultra-relativistic degenerate or electron-
ion both being non-relativistic degenerate) the width, A
of the solitons obtained from the solutions of K-dV and
modified K-dV equations (26) and (41) decreases sharply
in all conditions whatever ug or p increases with the term

¢.

VI. DISCUSSION

To summarize, we have carried out solitons by deriv-
ing the K-dV and modified K-dV equations for a planar
geometry in an unmagnetized plasma system containing
degenerate electrons (non-relativistic or ultra relativistic
limits) and degenerate ions being non-relativistic limit
and the arbitrary charged dust grains. We have shown
the existence of compressive (hump shape) and rarefac-
tive (dip shape) DIA modified K-dV solitons. We have
identified the basic features of potential DIA solitons,
which are found to exist beyond the K-dV limit. Gen-
erally the DIA modified K-dV solitons are completely



different from the K-dV solitary waves. The plasma sys-
tem under consideration supports finite potential modi-
fied K-dV solitons, whose basic features depend much on
the degenerate pressure of ion and electron and the pres-
ence of arbitrary charged dust grains. It may be stressed
here that the results of this investigation should be use-
ful for understanding the nonlinear features of electro-
static disturbances in laboratory plasma conditions. Our
investigation would also be useful to study the effects
of degenerate pressure in interstellar and space plasmas
[56], particularly in stellar polytropes [57], hadronic mat-

ter and quark-gluon plasma [58], protoneutron stars [59],
dark-matter halos [60] etc. Further it can be said that
the analysis of shock structures, vortices, double-layers
etc. in a nonplanar geometry where the degenerate pres-
sure can play the significant role, are also the problems
of great importance but beyond the scope of the present
work. To conclude, we propose to perform a laboratory
experiment which can study such special new features of
the DIA solitons propagating in dusty plasma in presence
of degenerate electrons and ions.
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