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A theoretical investigation has been made of the roles of the degeneracy and the dynamics of elec-
trons and ions on the DIA (dust ion-acoustic) Korteweg-de Vries and modified Korteweg-de Vries
solitons that are found to exit in a dusty degenerate dense plasma containing non-relativistic degen-
erate ions and both non-relativistic and ultra relativistic electrons fluids, and the negatively charged
dust grains. This fluid model, which is valid for both the non-relativistic and ultra-relativistic lim-
its has been employed with the reductive perturbation method. The K-dV and modified K-dV
equations have been derived, and numerically examined. The basic features of K-dV and modified
K-dV solitons have been analyzed. It has been observed that the dusty degenerate plasma system
under consideration supports the propagation of silitons obtained from the solutions of K-dV and
modified K-dV equations. The relevance of our results obtained from this investigation in compact
astrophysical objects is briefly discussed.

I. INTRODUCTION

Recently, the physics of dusty plasma is receiving a
great deal of attention[1–3]. Dusty plasmas are char-
acterized as a low temperature multispecies ionized gas
comprising electrons, protons, and negatively (or posi-
tively) charged grains of micrometer or submicrometer
size. The study of the collective effects in dusty plas-
mas is of significant interest. Charged dust grains are
found to modify or even dominate wave propagation
[4–8], wave scattering [9–12], wave instability [13], self-
similar plasma expansion [14], velocity modulation [15],
charged particle transport [16], and ion trapping [17].
However, most of the studies on wave motions [4–15]in
dusty plasma assume constant charge on the dust grains.

Now-a-days a number of authors have become inter-
ested to study the properties of matter under extreme
conditions [18–23], which occur due to the combine ef-
fect of Pauli’s exclusion principle and Heisenberg’s un-
certainty principle, depends only on the number density
of constituent particles, but independent on it’s own tem-
perature [34–36]. This degenerate pressure has an impor-
tant role to study the electrostatic perturbation in mat-
ters which exist in extreme conditions [18–20, 37, 38].
Electron degenerate pressure will halt the gravitational
collapse of a star if its mass is below the Chandrasekhar
limit (i.e. 1.44 solar masses) [39]. This is the pressure
that prevents a white dwarf star from collapsing. As-
trophysical aspects of high density like in many cosmic
environments, compact astrophysical objects [24–27] and
planetary systems have been recently discussed by Forton
[33]. Examples of the latter are white and brown dwarf
stars [28–30], as well as massive Jupiter [31] which serves
as the super-Earth terrestrial planets around other stars
[32], and the benchmark for giant planets.

In case of such a compact object the degenerate elec-
tron number density is so high (in white dwarfs it can
be of the order of 1030 cm−3, even more [34–36]) that
the electron Fermi energy is comparable to the electron
mass energy and as a result the electron speed becomes

comparable to the speed of light in vacuum. For such
interstellar compact objects the equation of state for de-
generate ions and electrons are mathematically explained
by Chandrasekhar [20] for two limits, named as non-
relativistic and ultra-relativistic limits. Chandrasekhar
[18, 20] presented a general expression for the relativistic
ion and electron pressures in his classical papers. The
pressure for ion fluid can be given by the following equa-
tion

Pi = Kin
α
i , (1)
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α =
5
3
; Ki =

3
5

(π

3

) 1
3 πh̄2

m
' 3

5
Λch̄c, (2)

for the non-relativistic limit (where Λc = πh̄/mc = 1.2×
10−10 cm, and h̄ is the Planck constant divided by 2π).
While for the electron fluid,

Pe = Ken
γ
e , (3)
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in the ultra-relativistic limit [18–20, 34, 35].
Recently, a large number of authors [34, 35, 40–50],

etc. have used the pressure laws (3) to (5) investi-
gate the linear and nonlinear properties of electrostatic
and electromagnetic waves, by using the non-relativistic
quantum hydrodynamic (QHD) [40] and quantum-
magnetohydrodynamic(Q-MHD) [43] models and by as-
suming either immobile ions or non-degenerate uncorre-
lated mobile ions. It turns out that the presence of the
latter and degenerate ultra relativistic electrons with the
pressure law (3-5) admits one-dimensional localized ion
models (IMs) supported by linear and non linear ion iner-
tial forces and the pressure of degenerate electron fluids in
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a dense quantum plasma that is unmagnetized. Further-
more, modified Volkov solutions of the Dirac equation
for electrostatic and electromagnetic waves in relativis-
tic quantum plasmas have been discussed by Mendonca
and Serbeto [51]. Again in this present days, some au-
thors [52–54] has made a number of theoretical investiga-
tions on the nonlinear propagation of electrostatic waves
in degenerate quantum plasma. These investigations are
mainly based on the electron equation of state, which are
only valid for the non-relativistic limit. Some investiga-
tions have been also made of the nonlinear propagation
of electrostatic waves in a degenerate dense plasma which
are mainly based on the degenerate electron equation of
state valid for ultra-relativistic limit [34–36].

Still now, there is no theoretical investigation has been
made to study the extreme condition of matter for both
non-relativistic and ultra-relativistic limits on the prop-
agation of electrostatic solitary waves in a dusty de-
generate dense plasma system. Therefore, in our pa-
per we study the properties of the solitons consider-
ing a dusty degenerate dense plasma containing degen-
erate electron-ion fluid (both non-relativistic and ultra-
relativistic limits) with the arbitrary (either positive or
negative) charged dust grains to study the basic features
of the electrostatic solitary structures with the solutions
of modified K-dV equation. Our considered model is rel-
evant to compact interstellar objects (i.e. white dwarf,
neutron star, black hole, etc.).

II. GOVERNING EQUATIONS

We consider a one-dimensional, unmagnetized dusty
degenerate electro-ion plasma system containing non-
relativistic degenerate cold ion and both non-relativistic
and ultra-relativistic degenerate electron fluids with ar-
bitrary charged dust grains. We are interested in the
propagation of electrostatic perturbation in such a dusty
degenerate dense plasma. Thus, at equilibrium condition
we have ni0 = ne0, where ni0 (ne0) is the ion (electron)
number density at equilibrium. The nonlinear dynamics
of the electrostatic waves propagating in such a degener-
ate plasma is governed by

∂ni

∂t
+

∂

∂x
(niui) = 0, (6)

∂ui

∂t
+ ui

∂ui

∂x
+

∂φ

∂x
+

K1

ni

∂nα
i

∂x
= 0, (7)

ne
∂φ

∂x
−K2

∂nγ
e

∂x
= 0, (8)

∂2φ

∂x2
= −ρ, (9)

ρ = ni − ne(1− µ). (10)

where ni (ne) is the ion (electron) number density nor-
malized by its equilibrium value ni0 (ne0), ui is the ion
fluid speed normalized by Ci = (mec

2/mi)1/2 with me

(mi) being the electron (ion) rest mass, c being the speed
of light in vacuum, φ is the electrostatic wave poten-
tial normalized by mec

2/e with e being the magnitude
of the charge of an electron, the time variable (t) is
normalized by ωpi = (4πn0e

2/mi)1/2, the space vari-
able (x) is normalized by λs = (mec

2/4πn0e
2)1/2 and

p is the polarity of the dust grains. The constants are
K1 = nα−1

0 Ki/mi
2Ci

2 and K2 = nγ−1
0 Ke/miCi

2.

III. DERIVATION OF K-DV EQUATION

Now we derive a dynamical K-dV equation for the non-
linear propagation of the DIA waves by using equations
(6-10). To do so, we employ a reductive perturbation
technique to examine electrostatic perturbations propa-
gating in the relativistic dusty degenerate dense plasma
due to the effect of dispersion, we first introduce the
stretched coordinates [55]

ζ = ε1/2(x− Vpt), (11)

τ = ε3/2t. (12)

where Vp is the wave phase speed (ω/k with ω being
angular frequency and k being the wave number of the
perturbation mode), and ε is a smallness parameter mea-
suring the weakness of the dispersion (0 < ε < 1). We
then expand ni, ne, ui, ρ, and φ, in power series of ε:

ni = 1 + εn
(1)
i + ε2n

(2)
i + · · ·, (13)

ne = 1 + εn(1)
e + ε2n(2)

e + · · ·, (14)

ui = εu
(1)
i + ε2u

(2)
i + · · ·, (15)

φ = εφ(1) + ε2φ(2) + · · ·, (16)

ρ = ερ(1) + ε2ρ(2) + · · ·, (17)

and develop equations in various powers of ε. To the
lowest order in ε, (6-10), using equations (11-17), give
as u

(1)
i = Vpφ

(1)/(V 2
p − K ′

1), n
(1)
i = φ(1)/(V 2

p − K ′
1),

n
(1)
e = φ(1)/K ′

2, and Vp =
√

K ′
2/(1− µ) + K ′

1 where
K ′

1 = αK1/(α − 1) and K ′
2 = γK2/(γ − 1). The rela-

tion Vp =
√

K ′
2/(1− µ) + K ′

1 represents the dispersion
relation for the dust ion-acoustic type electrostatic waves
in the degenerate plasma under consideration.

We are interested in studying the nonlinear propaga-
tion of these dispersive dust ion-acoustic type electro-
static waves in a degenerate plasma. To the next higher
order in ε, we obtain a set of equations

∂n
(1)
i

∂τ
− Vp

∂n
(2)
i

∂ζ
− ∂
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[u(2)

i + n
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i u
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i ] = 0, (18)
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(1)
i

∂u
(1)
i

∂ξ
− ∂φ(2)

∂ξ

−K ′
1

∂

∂ξ
[n(2)

i +
(α− 2)

2
(n(1)

i )
2
] = 0, (19)
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FIG. 1: Showing the effect of u0 on soliton (potential struc-
ture) obtained from eq. (26) for both electron-ion being non-
relativistic degenerate when µ is 0.5.

∂φ(2)

∂ξ
−K ′

2

∂

∂ξ

[
n(2)
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2
(n(1)
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]

= 0, (20)

∂2φ(1)

∂ξ2
= −ρ(1), (21)

ρ(1) = n
(2)
i − (1− µ)n(2)

e . (22)

Now, combining equations (18-22) we deduce a
Korteweg-de Vries equation as

∂φ(1)

∂τ
+ Aφ(1) ∂φ(1)

∂ξ
+ B

∂3φ(1)

∂ξ3
= 0, (23)

where

A =
(V 2

p −K ′
1)

2

2Vp
[
3V 2

p + K ′
1(α− 2)

(V 2
p −K ′

1)
3

+
(1− µ)(γ − 2)

K ′
2
2 ], (24)

B =
(V 2

p −K ′
1)

2

2Vp
. (25)

The stationary solitary wave solution of equation (23) is

φ(1) = φmsech2

(
ξ

∆

)
, (26)

where the special coordinate, ξ = ζ−u0τ , the amplitude,
φm = 3u0/A, and the width, ∆ = (4B/u0)1/2.

IV. DERIVATION OF MODIFIED K-DV
EQUATION

To examine electrostatic perturbations propagating in
the relativistic degenerate dense plasma due to the effect
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FIG. 2: Showing the effect of u0 on soliton (potential struc-
ture) obtained from eq. (26) for ion being non-relativistic de-
generate and electron being ultra-relativistic degenerate when
µ is 0.5.
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FIG. 3: Showing the effect of µ on soliton (potential struc-
ture) obtained from eq. (26) for both electron-ion being non-
relativistic degenerate when u0 is 0.1.

of dispersion by analyzing the outgoing solutions of equa-
tions (6-10), we now introduce the new set of stretched
coordinates for the modified K-dV equation is:

ξ = ε(x− Vpt), (27)

τ = ε3t. (28)

To the lowest order in ε, using equations (27,28, and
13-17), into the equations (6-10), we find the same results
as we have had for the solitons for K-dV equation.

To the next higher order in ε, we obtain a set of equa-
tions, which, after using the values of u

(1)
i , n

(1)
i , and n

(1)
e ,

can be simplified as
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FIG. 4: Showing the effect of µ on soliton (potential structure)
obtained from eq. (26) for ion being non-relativistic degener-
ate and electron being ultra-relativistic degenerate when u0

is 0.1.
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V 2
p K ′
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′
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V 3
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+
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n
(2)
i =
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V 2
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+ [3V 2
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n(2)
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K ′
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− (γ − 2)(φ(1))2

2(K ′
2)2

, (31)

ρ(2) =
1
2
Åφ(2) (32)
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(γ − 2)(1− µ)
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2)2

+
3V 2
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2(α− 2)

(V 2
p −K ′

1)3
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To further higher order of ε, we obtain a set of equations

∂n
(1)
i

∂τ
− Vp

∂n
(3)
i

∂ξ
+

∂u
(3)
i

∂ξ
+
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FIG. 5: Showing the effect of u0 on soliton (potential struc-
ture) obtained from eq. (41) for both electron-ion being non-
relativistic degenerate when µ is 0.5.

+
(α− 2)(α− 3)

6
(n(1)

e )
3
] = 0, (36)

∂2φ(1)

∂ξ2
= −ρ(3), (37)

ρ(3) = n
(3)
i − (1− µ)n(3)

e . (38)

Now combining equations (34) - (38) and using the values
of n

(1)
i , n

(2)
i , u

(1)
i , u

(2)
i , and ρ(2), we obtain an equation

of the form

∂φ(1)

∂τ
+ β{φ(1)}2 ∂φ(1)

∂ξ
+ B

∂3φ(1)

∂ξ3
= 0, (39)

where the value of B is as before and β is given by

β =
1

2(V 2
p −K ′

1)5
[K ′

1(α− 2)(α− 3)(V 2
p −K ′

1) + 15V 4
p

+12K ′
1V

2
p + 18K ′

1V
2
p (α− 2)2 + 3(K ′

1(α− 2))2]

− (1− µ)(12− 10γ + 2γ2)
2(K ′

2)3
, (40)

We call equation (39) as modified K-dV equation for
planner geometry. The stationary solitary solution of
equation (39) is given by

φ(1) = φmsech(
ξ

∆
), (41)

where the special coordinate, ξ = ζ−u0τ , the amplitude
is φm =

√
6u0
β , the width is ∆ =

√
1

γφm
and u0 is the

plasma species speed at equilibrium.

V. NUMERICAL ANALYSIS

In the figures 1-4 we have tried to show the solitons
(solitary profiles) from the solution of K-dV equation (26)
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FIG. 6: Showing the effect of u0 on soliton (potential struc-
ture) obtained from eq. (41) for ion being non-relativistic de-
generate and electron being ultra-relativistic degenerate when
µ is 0.5.
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FIG. 7: Showing the effect of µ on soliton (potential struc-
ture) obtained from eq. (41) for both electron-ion being non-
relativistic degenerate when u0 is 0.1.

due to the effect of µ and u0 on the potential, φ(1) for the
case of electron-ion being non-relativistic degenerate and
ion being non-relativistic degenerate and electron being
ultra-relativistic degenerate. And the figures 5-8 repre-
sent the solitons (solitary profiles) from the solution of
modified K-dV equation (41) due to the effect of µ and
u0 on the potential, φ(1) for the both case of relativistic
limit. From the figures 1-2 we have observed the effect
of u0 on the potential, φ(1) for the solitary profiles ob-
tained from the solution of K-dV equation (26) when we
have considered the value of µ as 0.5 for the both case
of relativistic limits. And from the figures 3-4 we have
observed the effect of µ on the potential, φ(1) for the soli-
tary profiles obtained from the solution of K-dV equation
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FIG. 8: Showing the effect of µ on soliton (potential structure)
obtained from eq. (41) for ion being non-relativistic degener-
ate and electron being ultra-relativistic degenerate when u0

is 0.1.

(26) when u0 is 0.1 for the both case of relativistic lim-
its. Again from the figures 5-6 we have analyzed the
effect of u0 when µ is 0.5 and from the figures 7-8 we
have observed the effect of µ when u0 is 0.1 on the po-
tential, φ(1) of the solitons obtained from the solution of
modified K-dV equation (41) for both case of relativistic
limits.

By the careful observation on the figures 1-8 it has be-
come clear that the terms u0 and µ have an great effect on
the potential, φ(1) of the K-dV and modified K-dV soli-
tons. Because the potential, φ(1) increases more rapidly
for ion being non-relativistic degenerate and electron be-
ing ultra-relativistic degenerate than for both electron-
ion being non-relativistic degenerate. Again in the same
case (either ion being non-relativistic degenerate and
electron being ultra-relativistic degenerate or electron-
ion both being non-relativistic degenerate) the width, ∆
of the solitons obtained from the solutions of K-dV and
modified K-dV equations (26) and (41) decreases sharply
in all conditions whatever u0 or µ increases with the term
ξ.

VI. DISCUSSION

To summarize, we have carried out solitons by deriv-
ing the K-dV and modified K-dV equations for a planar
geometry in an unmagnetized plasma system containing
degenerate electrons (non-relativistic or ultra relativistic
limits) and degenerate ions being non-relativistic limit
and the arbitrary charged dust grains. We have shown
the existence of compressive (hump shape) and rarefac-
tive (dip shape) DIA modified K-dV solitons. We have
identified the basic features of potential DIA solitons,
which are found to exist beyond the K-dV limit. Gen-
erally the DIA modified K-dV solitons are completely
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different from the K-dV solitary waves. The plasma sys-
tem under consideration supports finite potential modi-
fied K-dV solitons, whose basic features depend much on
the degenerate pressure of ion and electron and the pres-
ence of arbitrary charged dust grains. It may be stressed
here that the results of this investigation should be use-
ful for understanding the nonlinear features of electro-
static disturbances in laboratory plasma conditions. Our
investigation would also be useful to study the effects
of degenerate pressure in interstellar and space plasmas
[56], particularly in stellar polytropes [57], hadronic mat-

ter and quark-gluon plasma [58], protoneutron stars [59],
dark-matter halos [60] etc. Further it can be said that
the analysis of shock structures, vortices, double-layers
etc. in a nonplanar geometry where the degenerate pres-
sure can play the significant role, are also the problems
of great importance but beyond the scope of the present
work. To conclude, we propose to perform a laboratory
experiment which can study such special new features of
the DIA solitons propagating in dusty plasma in presence
of degenerate electrons and ions.
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